Twin intersection mechanisms in nanocrystalline fcc metals

نویسندگان

  • F. Wu
  • H. M. Wen
  • J. Narayan
  • Y. T. Zhu
چکیده

Deformation twins have been reported to produce high strength and ductility. Intersections of deformation twins may affect the microstructural evolution during plastic deformation and consequently influence mechanical properties. However, the mechanisms governing twin-intersection behavior remain poorly understood. In this study, we investigated twin intersection mechanisms by observing twin transmission across the boundary of another twin using high-resolution transmission electron microscopy. Based on the experimental observations, mechanisms were proposed for twin–twin intersections and associated dislocation reactions in nanocrystalline fcc materials. & 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformation twinning in nanocrystalline materials

Nanocrystalline (nc) materials can be defined as solids with grain sizes in the range of 1–100 nm. Contrary to coarse-grained metals, which become more difficult to twin with decreasing grain size, nanocrystalline face-centered-cubic (fcc) metals become easier to twin with decreasing grain size, reaching a maximum twinning probability, and then become more difficult to twin when the grain size ...

متن کامل

Macroscopic Twinning Strain in Nanocrystalline Cu

Most deformation twins in nanocrystalline face-centered cubic (NC fcc) metals are reported to produce zero-macrostrain, which is attributed to either random activation of partials (RAP) or cooperative slip of three partials (CSTP). Here, we report that when the RAP mechanism is suppressed, ∼44% twins in NC Cu produced zero-macrostrain via the CSTP mechanism. This indicates that both RAP and CST...

متن کامل

Dislocation–twin interactions in nanocrystalline fcc metals

Dislocation interaction with and accumulation at twin boundaries have been reported to significantly improve the strength and ductility of nanostructured face-centered cubic (fcc) metals and alloys. Here we systematically describe plausible dislocation interactions at twin boundaries. Depending on the characteristics of the dislocations and the driving stress, possible dislocation reactions at ...

متن کامل

Grain size effect on deformation twinning and detwinning

This article systematically overviews the grain size effect on deformation twinning and detwinning in face-centered cubic (fcc) metals. With decreasing grain size, coarse-grained fcc metals become more difficult to deform by twinning, whereas nanocrystalline (nc) fcc metals first become easier to deform by twinning and then become more difficult, exhibiting an optimum grain size for twinning. T...

متن کامل

Investigation of the elementary mechanisms controlling dislocation/twin boundary interactions in fcc metals and alloys: from conventional to advanced TEM characterization

The elementary mechanisms controlling the interactions between lattice gliding dislocations and twin boundaries were carefully analyzed using conventional and advanced transmission electron microscopy techniques in both bulk coarsegrained Fe-Mn-C TWIP steels with deformation twins and nanocrystalline Palladium thin films with nanoscale growth twins. The results reveal that the individual disloc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013